A framework is presented to extract and understand decision-making information from a deep neural network classifier of jet substructure tagging techniques. There are two methods studied. The first is using expert variables that augment the inputs ("expert-augmented" variables, or XAUGs). These XAUGs are concatenated to the classifier steps immediately before the final decision. The second is layerwise relevance propagation (LRP). The results show that XAUG variables can be used to interpret classifier behavior, increase discrimination ability when combined with low-level features, and in some cases capture the behavior of the classifier completely. The LRP technique can be used to find relevant information the network is using, and when combined with the XAUG variables, can be used to rank features, allowing one to find a reduced set of features that capture part of the network performance. These XAUGs can also be added to low-level networks as a guide to improve performance.
翻译:提供了一个框架来提取和理解从一个深层神经网络分类器获得的关于喷气式亚结构标记技术的决策信息。 研究了两种方法: 一种是使用专家变量来增加投入( “ 专家推荐” 变量, 或 XAUGs ) 。 这些XAUG 是在最后决定之前被连接到分类器步骤的。 第二种是分层相关性传播。 结果显示, XAUG 变量可以用来解释分类器的行为, 在与低级别特性相结合时增加歧视能力, 在某些情况下可以完全捕捉分类器的行为 。 LRP 技术可以用来查找网络使用的相关信息, 当与 XAUG 变量相结合时, 可以用来排列特性, 允许一个人找到一组缩小的特征来捕捉网络的部分性能。 这些 XAUG 也可以添加到低级别网络, 作为改进性能的指南 。