In this paper, we introduce a novel road marking benchmark dataset for road marking detection, addressing the limitations in the existing publicly available datasets such as lack of challenging scenarios, prominence given to lane markings, unavailability of an evaluation script, lack of annotation formats and lower resolutions. Our dataset consists of 2887 total images with 4706 road marking instances belonging to 11 classes. The images have a high resolution of 1920 x 1080 and capture a wide range of traffic, lighting and weather conditions. We provide road marking annotations in polygons, bounding boxes and pixel-level segmentation masks to facilitate a diverse range of road marking detection algorithms. The evaluation metrics and the evaluation script we provide, will further promote direct comparison of novel approaches for road marking detection with existing methods. Furthermore, we evaluate the effectiveness of using both instance segmentation and object detection based approaches for the road marking detection task. Speed and accuracy scores for two instance segmentation models and two object detector models are provided as a performance baseline for our benchmark dataset. The dataset and the evaluation script is publicly available at https://github.com/oshadajay/CeyMo.
翻译:在本文中,我们推出一个新的道路标识基准数据集,用于道路标识探测,解决现有公开数据集中的局限性,如缺乏具有挑战性的情景,突出道路标识,突出道路标识,缺少评价文字,缺乏注释格式和分辨率较低。我们的数据集包括2887个图像,共有4706个属于11类的道路标识实例。图像具有1920 x 1080 的高分辨率,并记录了广泛的交通、照明和天气条件。我们在多边形、捆绑框和像素级分解面罩中提供道路标识说明,以便利各种道路标识检测算法。我们提供的评价指标和评价脚本将进一步促进对道路标识探测新办法与现有方法的直接比较。此外,我们还评估了在道路标识探测任务中使用实例分解和物体探测方法的有效性。提供了两个实例分解模型和两个物体检测模型的速度和准确度,作为我们基准数据集的性能基线。数据集和评价脚本公布在https://github.com/oshadajay/CeyMo。