项目名称: 高效光纤型SERS探针的界面设计、可控制备及性能研究

项目编号: No.51301166

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 曹杰

作者单位: 中国科学院合肥物质科学研究院

项目金额: 25万元

中文摘要: 光纤SERS探针结构紧凑,且具有比宏观SERS基底更高的检测灵敏度,在痕量检测、高灵敏度传感等领域有着重要的应用前景。但因石英光纤的化学稳定性好,使得光纤SERS探针面临着贵金属纳米结构难以与光纤表面高强度结合且难以调控纳米结构形貌与尺度等困难。本项目拟通过活化石英光纤表面,优化筛选出具有合适官能团的修饰分子,再以这种修饰分子为纽带,实现石英光纤与贵金属纳米结构间的高强度化学键合;通过进一步筛选修饰分子,阐明贵金属纳米结构在功能化光纤上的成核机理以及晶核生长调控机制,利用基于液相化学合成的种子生长法,实现对光纤表面的贵金属纳米结构形貌尺度的调控。通过本项研究,利用修饰分子嫁接技术实现石英光纤与贵金属纳米材料异质结构界面间的化学键合,提高纳米光纤SERS探针机械与物理强度;通过光纤上贵金属纳米结构形貌和尺度的调控,提高光纤SERS探针的探测灵敏度。因此,本项研究具有重要的科学意义和实用价值。

中文关键词: 光纤探针;贵金属纳米材料;表面增强拉曼光谱;界面设计;可控合成

英文摘要: With its compactness and higher sensitivity than SERS substrate, the optical fiber surface enhanced Raman scattering (SERS) probe may find a variety of applications in trace detection, high sensitivity sensing, and so on. However, due to the high chemical stability of the silica-based optical fiber, it is hard to realize the strong bonding between noble metal nano-structure and the silica-based optical fiber, and also hard to prepare the noble metal nano-structure with controlled morphology and scale on the surface of the optical fiber. In this project, by producing activated groups on the surface of silica-based fiber, we can choose specific modified molecules with suitable functional groups, then use such specific modified molecules as the link, and finally make it possible to form the stable and strong chemical bond between the silica-based optical fiber and nobel metal nano-structure. By further choosing specific modified molecules, and clarifying the mechanism of nucleation and crystal growth regulation mechanism of the noble metal nano-structure on the fiber surface, the morphology and scale of the noble metal nano-structure formed on the fiber surface can be adjusted and controlled by using seed growth method based on the liquid-phase chemical synthesis. This project may greatly increase the mechanical an

英文关键词: optical fiber probe;noble metal nanomaterials;surface-enhanced Raman scattering;interface design;controllable synthesis

成为VIP会员查看完整内容
0

相关内容

【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
专知会员服务
21+阅读 · 2021年3月9日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
16+阅读 · 2020年5月20日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关VIP内容
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
专知会员服务
21+阅读 · 2021年3月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员