We analyze families of primal high-order hybridizable discontinuous Galerkin (HDG) methods for solving degenerate (second-order) elliptic problems. One major trouble regarding this class of PDEs concerns its mathematical nature, which may be nonuniform over the domain. Due to the local degeneracy of the diffusion term, it can be purely hyperbolic in a subregion and elliptic in the rest. This problem is thus quite delicate to solve since the exact solution is discontinuous at interfaces separating both elliptic and hyperbolic parts. The proposed HDG method is developed in a unified and compact fashion. It can efficiently handle pure diffusive or advective regimes and intermediate regimes that combine the above mechanisms for a wide range of P\'eclet numbers, including the delicate situation of local evanescent diffusion. To this end, an adaptive stabilization strategy based on the addition of jump-penalty terms is then considered. A $\theta$-upwind-based scheme is favored for the hyperbolic region, and an inspired Scharfetter--Gummel-based technique is preferred for the elliptic region. The well-posedness of the HDG method is also discussed by analyzing the consistency and discrete coercivity properties. Extensive numerical experiments are finally considered to verify the model's robustness for all the abovementioned regimes.


翻译:我们分析原始高序混合不连续的Galerkin (HDG) 家庭, 以解决退化( 第二顺序) 椭圆形问题。 有关这一类PDE 的主要难题之一是其数学性质, 其数学性质可能不统一。 由于扩散术语的局部退化, 它在一个分区可以是纯超脱型的, 而在其余的分区可能是椭圆形的。 这个问题因此非常微妙, 因为精确的解决方案在将椭圆形和双曲形部分隔开的界面上是不连贯的。 拟议的HDG 方法是以统一和紧凑的方式开发的。 它能够有效地处理纯的 diffusive 或 advictive 制度和中间制度, 将以上各种机制结合在一起, 其范围可能不统一。 由于扩散术语的局部性, 它可能在一个分区中纯粹是双曲形的, 而在其它的分区中, 它可能是一个纯粹的双向的, 。 因此, 将一个基于跳形和双曲线部分的适应稳定战略 。 一个基于 计划被偏爱极区域,, 并且 受启发的Scharf- Gumel- gemel- gemel- sy- sy- sy 技术 也被最后被讨论到 Qalallivicolvical liver liver liveralalalalal liviolvical 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员