The polypharmacy side effect prediction problem considers cases in which two drugs taken individually do not result in a particular side effect; however, when the two drugs are taken in combination, the side effect manifests. In this work, we demonstrate that multi-relational knowledge graph completion achieves state-of-the-art results on the polypharmacy side effect prediction problem. Empirical results show that our approach is particularly effective when the protein targets of the drugs are well-characterized. In contrast to prior work, our approach provides more interpretable predictions and hypotheses for wet lab validation.
翻译:多种药用副作用预测问题考虑了两种药物单独服用不会产生特定副作用的情况;然而,当这两种药物合并使用时,副作用就显现出来。在这项工作中,我们证明多关系知识图的完成在多药用副作用预测问题上取得了最先进的结果。经验性结果显示,当药物的蛋白质目标性质明确时,我们的方法特别有效。与先前的工作不同,我们的方法为湿实验室验证提供了更多的可解释的预测和假设。