Generative image modeling enables a wide range of applications but raises ethical concerns about responsible deployment. This paper introduces an active strategy combining image watermarking and Latent Diffusion Models. The goal is for all generated images to conceal an invisible watermark allowing for future detection and/or identification. The method quickly fine-tunes the latent decoder of the image generator, conditioned on a binary signature. A pre-trained watermark extractor recovers the hidden signature from any generated image and a statistical test then determines whether it comes from the generative model. We evaluate the invisibility and robustness of the watermarks on a variety of generation tasks, showing that Stable Signature works even after the images are modified. For instance, it detects the origin of an image generated from a text prompt, then cropped to keep $10\%$ of the content, with $90$+$\%$ accuracy at a false positive rate below 10$^{-6}$.
翻译:生成图像建模能够支持广泛的应用,同时也带来了有关负责任部署的道德问题。本文介绍了一种活跃策略,结合了图像水印和潜在扩散模型。其目标是让所有生成的图像都隐藏一个看不见的水印,以便未来进行检测和/或识别。该方法通过一个二进制签名快速微调图像生成器的潜在解码器。一个预训练的水印提取器从任何生成的图像中恢复出隐藏的签名,然后使用统计测试确定它是否来自生成模型。我们评估了水印在各种生成任务中的隐形性和鲁棒性,表明稳定签名即使在图像被修改后也可以工作。例如,它可以以低于$10^{-6}$的假阳性率和90+$\%$的准确率检测到从文本提示生成的图像的来源,然后裁剪以保留10$\%$的内容。