We propose a new microscopy simulation system that can depict atomistic models in a micrograph visual style, similar to results of physical electron microscopy imaging. This system is scalable, able to represent simulation of electron microscopy of tens of viral particles and synthesizes the image faster than previous methods. On top of that, the simulator is differentiable, both its deterministic as well as stochastic stages that form signal and noise representations in the micrograph. This notable property has the capability for solving inverse problems by means of optimization and thus allows for generation of microscopy simulations using the parameter settings estimated from real data. We demonstrate this learning capability through two applications: (1) estimating the parameters of the modulation transfer function defining the detector properties of the simulated and real micrographs, and (2) denoising the real data based on parameters trained from the simulated examples. While current simulators do not support any parameter estimation due to their forward design, we show that the results obtained using estimated parameters are very similar to the results of real micrographs. Additionally, we evaluate the denoising capabilities of our approach and show that the results showed an improvement over state-of-the-art methods. Denoised micrographs exhibit less noise in the tilt-series tomography reconstructions, ultimately reducing the visual dominance of noise in direct volume rendering of microscopy tomograms.
翻译:我们建议一个新的显微镜模拟系统,能够以显微镜式的视觉风格描述原子模型,类似于物理电子显微镜成像的结果。这个系统可缩放,能够代表数十个病毒粒子的电子显微镜的模拟,并比以前的方法更快地合成图像。此外,模拟器具有差异性,既具有确定性,也具有在显微图中形成信号和噪音的信号和声音表现的显微镜阶段。这个显著的属性有能力通过优化手段解决反向问题,从而能够利用根据真实数据估计的参数设置生成显微镜模拟。我们通过两种应用来展示这一学习能力:(1) 估计调制转换功能的参数,确定模拟和真实显微镜的检测特性,(2) 根据模拟实例所培训的参数去动真实数据。虽然目前的模拟器不支持由于其前方设计而产生的任何参数估计,但我们显示,使用估计参数获得的结果与真实的显微镜结果非常相似。此外,我们通过两种应用两种应用来显示这种学习能力:(1) 估计,我们通过估计的显微镜性转换方法的显微镜性调整方法的显微镜分析结果,以较慢的显微镜性地显示,在显微镜分析方法中,将显微镜的显微镜上的方法进行后显示,将显微变的显微镜分析方法显示其结果。