Sellers in online markets face the challenge of determining the right time to sell in view of uncertain future offers. Classical stopping theory assumes that sellers have full knowledge of the value distributions, and leverage this knowledge to determine stopping rules that maximize expected welfare. In practice, however, stopping rules must often be determined under partial information, based on scarce data or expert predictions. Consider a seller that has one item for sale and receives successive offers drawn from some value distributions. The decision on whether or not to accept an offer is irrevocable, and the value distributions are only partially known. We therefore let the seller adopt a robust maximin strategy, assuming that value distributions are chosen adversarially by nature to minimize the value of the accepted offer. We provide a general maximin solution to this stopping problem that identifies the optimal (threshold-based) stopping rule for the seller for all statistical information structures. We then perform a detailed analysis for when the seller knows the common mean, dispersion (variance or mean absolute deviation) and support of the distributions. We show for this information structure that the seller's stopping rule consists of decreasing thresholds converging to the common mean, and that nature's adversarial response, in the long run, is to always create an all-or-nothing scenario. The maximin solutions also reveal what happens as dispersion or the number of offers grows large.


翻译:在线市场上的卖主面临挑战,要根据不确定的未来报价确定销售的适当时间。 经典停止理论假定卖方对价值分配有充分的了解,并利用这一知识确定停止提供预期福利的规则。 然而,在实践中,停止规则往往必须根据稀缺的数据或专家预测,根据部分信息确定。 认为有一个销售项目并接收从某些价值分配中得出的连续报价的卖主。 决定是否接受报价是不可撤销的,价值分配只是部分已知。 因此,我们让卖方采取强有力的最高额战略,假设价值分配是按性质对准的,以尽量减少所接受报价的价值。 我们为制止这一问题提供了一个普遍最有力的解决办法,即根据稀缺的数据或专家预测,确定最佳(基于门槛的)规则,停止卖方所有统计资料结构的规则。 然后,我们详细分析卖方知道共同平均值、分散(差或绝对偏差)和支持分配的情况。 我们为这一信息结构显示,卖方停止执行的规则包括降低阈值的临界值,按性质选择分配价值分配,以尽量减少所接受的报价的价值价值价值价值价值。 我们为这一办法提供了一个总体最有力的解决办法,即确定最佳(基于门槛的)的最佳办法,而自然会将提出一个最接近于最大版本。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Local search for efficient causal effect estimation
Arxiv
0+阅读 · 2022年7月22日
Arxiv
0+阅读 · 2022年7月21日
Optimal precision for GANs
Arxiv
0+阅读 · 2022年7月21日
Arxiv
0+阅读 · 2022年7月20日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员