Sellers in online markets face the challenge of determining the right time to sell in view of uncertain future offers. Classical stopping theory assumes that sellers have full knowledge of the value distributions, and leverage this knowledge to determine stopping rules that maximize expected welfare. In practice, however, stopping rules must often be determined under partial information, based on scarce data or expert predictions. Consider a seller that has one item for sale and receives successive offers drawn from some value distributions. The decision on whether or not to accept an offer is irrevocable, and the value distributions are only partially known. We therefore let the seller adopt a robust maximin strategy, assuming that value distributions are chosen adversarially by nature to minimize the value of the accepted offer. We provide a general maximin solution to this stopping problem that identifies the optimal (threshold-based) stopping rule for the seller for all statistical information structures. We then perform a detailed analysis for when the seller knows the common mean, dispersion (variance or mean absolute deviation) and support of the distributions. We show for this information structure that the seller's stopping rule consists of decreasing thresholds converging to the common mean, and that nature's adversarial response, in the long run, is to always create an all-or-nothing scenario. The maximin solutions also reveal what happens as dispersion or the number of offers grows large.
翻译:在线市场上的卖主面临挑战,要根据不确定的未来报价确定销售的适当时间。 经典停止理论假定卖方对价值分配有充分的了解,并利用这一知识确定停止提供预期福利的规则。 然而,在实践中,停止规则往往必须根据稀缺的数据或专家预测,根据部分信息确定。 认为有一个销售项目并接收从某些价值分配中得出的连续报价的卖主。 决定是否接受报价是不可撤销的,价值分配只是部分已知。 因此,我们让卖方采取强有力的最高额战略,假设价值分配是按性质对准的,以尽量减少所接受报价的价值。 我们为制止这一问题提供了一个普遍最有力的解决办法,即根据稀缺的数据或专家预测,确定最佳(基于门槛的)规则,停止卖方所有统计资料结构的规则。 然后,我们详细分析卖方知道共同平均值、分散(差或绝对偏差)和支持分配的情况。 我们为这一信息结构显示,卖方停止执行的规则包括降低阈值的临界值,按性质选择分配价值分配,以尽量减少所接受的报价的价值价值价值价值价值。 我们为这一办法提供了一个总体最有力的解决办法,即确定最佳(基于门槛的)的最佳办法,而自然会将提出一个最接近于最大版本。