In this paper, we analyze the effects of erroneous load comparisons on the performance of the Po2 scheme. Specifically, we consider {\em load-dependent} and {\em load-independent} errors. In the load-dependent error model, an incoming job is sent to the server with the larger queue length among the two sampled servers with an error probability $\epsilon$ if the difference in the queue lengths of the two sampled servers is less than or equal to a constant $g$; no error is made if the queue-length difference is higher than $g$. For this type of errors, we show that the benefits of the Po2 scheme is retained as long as the system size is sufficiently large and $\lambda$ is sufficiently close to $1$. Furthermore, we show that, unlike the standard Po2 scheme, the performance of the Po2 scheme under this type of errors can be worse than the random scheme if $\epsilon > 1/2$ and $\lambda$ is sufficiently small. In the load-independent error model, the incoming job is sent to the sampled server with the {\em maximum load} with an error probability of $\epsilon$ independent of the loads of the sampled servers. For this model, we show that the performance benefits of the Po2 scheme are retained only if $\epsilon \leq 1/2$; for $\epsilon > 1/2$ we show that the stability region of the system reduces and the system performs poorly in comparison to the {\em random scheme}.


翻译:在本文中, 我们分析错误的负载比较对 Po2 方案性能的影响。 具体地说, 我们考虑 $em load- reparent } 和 em load- reparent} 错误。 在基于负载的错误模型中, 输入的任务被发送到服务器, 两个抽样服务器的队列长度越长, 差错概率为$\ epsilon 美元, 如果两个抽样服务器的队列长度差小于或等于恒定美元; 如果队列长度差大于$g$, 则不会出错。 对于这种错误模式, 我们显示 Po2 计划的好处只要系统规模足够大、 $\ lamda$ 足够接近 $ 就会保留到服务器上。 此外, 我们表明, 与标准 Po2 方案不同的是, 如果 eeplon > 1 /2 和 lambda 美元 的队列长度差, 则Po2 计划的表现可能比随机方案差, 如果 $% 的系统 的运算只能 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
76+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月24日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
76+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员