Using a deep autoencoder (DAE) for end-to-end communication in multiple-input multiple-output (MIMO) systems is a novel concept with significant potential. DAE-aided MIMO has been shown to outperform singular-value decomposition (SVD)-based precoded MIMO in terms of bit error rate (BER). This paper proposes embedding left- and right-singular vectors of the channel matrix into DAE encoder and decoder to further improve the performance of MIMO spatial multiplexing. SVD-embedded DAE largely outperforms theoretic linear precoding in terms of BER. This is remarkable since it demonstrates that the proposed DAEs have significant potential to exceed the limits of current system design by treating the communication system as a single, end-to-end optimization block. Based on the simulation results, at SNR=10dB, the proposed SVD-embedded design can achieve BER nearly $10^{-5}$ and reduce the BER at least 10 times compared with existing DAE without SVD, and up to 18 times improvement compared with theoretical linear precoding. We attribute this to the fact that the proposed DAE can match the input and output as an adaptive modulation structure with finite alphabet input. We also observe that adding residual connections to the DAE further improves the performance.
翻译:在多输出多输出(MIMO)系统中,使用深自动编码器(DAE)进行端到端通信是一个具有巨大潜力的新概念。 DAE 援助的MIMO已证明在比特误差率(BER)方面比以单值分解(SVD)为基础的预先编码的MIMO表现优于单值分解(SVDD)的比特差率(BER) 。本文建议将频道矩阵的左向和右向导矢量嵌入 DAE 编码器和分解码器中,以进一步改善MIMO 空间多氧化(MIMO)系统的性能。SVDE 嵌入式 DAE 基本上超越了BER 的线性能预解密。 这一点值得注意,因为它表明拟议的DAE 通过将通信系统作为单一的、端到端优化区块来处理,在目前的系统设计中具有巨大的潜力超过极限。 根据SNR=10dB的模拟结果,拟议的SVDE 封装式设计可以达到近 10 ⁇ -5},并且至少10倍地将BE 与现有的DADEE 升级连接比比现有的DAVDADADADADADAD可以改进到18时间,并且将我们提议的升级升级为18的升级。