Despite the increasing interest in neural architecture search (NAS), the significant computational cost of NAS is a hindrance to researchers. Hence, we propose to reduce the cost of NAS using proxy data, i.e., a representative subset of the target data, without sacrificing search performance. Even though data selection has been used across various fields, our evaluation of existing selection methods for NAS algorithms offered by NAS-Bench-1shot1 reveals that they are not always appropriate for NAS and a new selection method is necessary. By analyzing proxy data constructed using various selection methods through data entropy, we propose a novel proxy data selection method tailored for NAS. To empirically demonstrate the effectiveness, we conduct thorough experiments across diverse datasets, search spaces, and NAS algorithms. Consequently, NAS algorithms with the proposed selection discover architectures that are competitive with those obtained using the entire dataset. It significantly reduces the search cost: executing DARTS with the proposed selection requires only 40 minutes on CIFAR-10 and 7.5 hours on ImageNet with a single GPU. Additionally, when the architecture searched on ImageNet using the proposed selection is inversely transferred to CIFAR-10, a state-of-the-art test error of 2.4\% is yielded. Our code is available at https://github.com/nabk89/NAS-with-Proxy-data.


翻译:尽管人们日益关注神经结构搜索(NAS),但NAS的大量计算成本对研究人员来说是一个障碍。因此,我们提议减少NAS使用代理数据的成本,即目标数据中具有代表性的子集,但又不牺牲搜索性能。尽管数据选择已在各个领域使用,但我们对NAS-Bench-1shot1 提供的NAS算法现有选择方法的评估显示,这些方法并不总是适合NAS,因此有必要采用新的选择方法。通过分析使用数据加密的不同选择方法构建的代理数据,我们提议为NAS量身定制的新的代理数据选择方法。为了从经验上证明有效性,我们在不同的数据集、搜索空间和NAS算法中进行彻底的实验。因此,NAS与拟议的选择发现结构具有竞争力,与使用整个数据集获得的算法1 相比,这大大降低了搜索成本:使用拟议的选择方法执行DARSS只需要40分钟,在图像网络上用单一的GPU进行7.5小时的代理数据。此外,在图像网络上搜索的图像网络上使用拟议选择的架构中,使用拟议的选择是Prona-rus-lax am-axxx astaldaldaldaltodaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldat。 AS)

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2020年12月14日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
专知会员服务
59+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AutoML 和神经架构搜索初探
极市平台
9+阅读 · 2018年8月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
AutoML 和神经架构搜索初探
极市平台
9+阅读 · 2018年8月8日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员