The need to know a few singular triplets associated with the largest singular values of third-order tensors arises in data compression and extraction. This paper describes a new method for their computation using the t-product. Methods for determining a couple of singular triplets associated with the smallest singular values also are presented. The proposed methods generalize available restarted Lanczos bidiagonalization methods for computing a few of the largest or smallest singular triplets of a matrix. The methods of this paper use Ritz and harmonic Ritz lateral slices to determine accurate approximations of the largest and smallest singular triplets, respectively. Computed examples show applications to data compression and face recognition.
翻译:在数据压缩和提取过程中,需要了解与三阶高压的最大单值相关的几个单数三角体。本文描述了一种使用T产品进行计算的新方法。 也介绍了确定与最小单值相关的数个单数三角体的方法。 拟议的方法概括了用于计算一个矩阵中几个最大或最小的单数三重体的重新启用的Lanczos feiagonal化方法。 本文的方法是使用Ritz和口音Ritz横向切片分别确定最大和最小的单数三重体的准确近似值。 计算的例子显示数据压缩和面部识别的应用。