Many, if not most, systems of interest in science are naturally described as nonlinear dynamical systems (DS). Empirically, we commonly access these systems through time series measurements, where often we have time series from different types of data modalities simultaneously. For instance, we may have event counts in addition to some continuous signal. While by now there are many powerful machine learning (ML) tools for integrating different data modalities into predictive models, this has rarely been approached so far from the perspective of uncovering the underlying, data-generating DS (aka DS reconstruction). Recently, sparse teacher forcing (TF) has been suggested as an efficient control-theoretic method for dealing with exploding loss gradients when training ML models on chaotic DS. Here we incorporate this idea into a novel recurrent neural network (RNN) training framework for DS reconstruction based on multimodal variational autoencoders (MVAE). The forcing signal for the RNN is generated by the MVAE which integrates different types of simultaneously given time series data into a joint latent code optimal for DS reconstruction. We show that this training method achieves significantly better reconstructions on multimodal datasets generated from chaotic DS benchmarks than various alternative methods.
翻译:许多(如果不是大多数的话)科学感兴趣的系统自然被描述为非线性动态系统(DS ) 。 简而言之,我们通常通过时间序列测量(DS ) 获取这些系统,我们通常通过时间序列测量(DS ) 获取这些系统,我们常常同时使用不同类型数据模式的时间序列。例如,我们除了某些连续信号之外,还可能有事件计数。虽然现在有许多强大的机器学习(ML)工具将不同数据模式纳入预测模型,但迄今为止,从发现数据生成 DS (aka DS 重建) 的基本数据系列数据的角度,很少使用这种工具。最近,当培训关于混乱 DS 模型的 ML 模型时,我们曾建议用少量的教师强迫(TF) 作为一种有效的控制理论方法来处理爆炸性损失梯度。我们在这里将这一想法纳入基于多式联运变异自动计算器(MVAE)重建的新的经常性神经网络(RNNN) 培训框架。对于RNNE 的强迫信号来自MVAE,它把不同类型的同时提供的时间序列数据的数据纳入DS 重建的共同潜值代码的最佳模式。我们显示,这种培训方法比从混乱DS 各种标准基准中产生的多式数据设置实现了更好的重建。