A sharp tension exists about the nature of human language between two opposite parties: those who believe that statistical surface distributions, in particular using measures like surprisal, provide a better understanding of language processing, vs. those who believe that discrete hierarchical structures implementing linguistic information such as syntactic ones are a better tool. In this paper, we show that this dichotomy is a false one. Relying on the fact that statistical measures can be defined on the basis of either structural or non-structural models, we provide empirical evidence that only models of surprisal that reflect syntactic structure are able to account for language regularities.
翻译:在两个对立方之间,在人文语言的性质方面存在着尖锐的紧张关系:那些认为统计表层分布,特别是使用假定等措施,能够使人们更好地了解语言处理,而那些认为使用语言信息,例如合成语言信息的离散等级结构是一个更好的工具的人。在本文中,我们表明这种二分法是错误的。我们以统计措施可以结构模式或非结构模式为基础来界定这一事实为依据,提供了经验证据,证明只有反映综合结构的假设模式才能说明语言的规律性。