We present a grammar for expressing hypotheses in visual data analysis to formalize the previously abstract notion of "analysis tasks." Through the lens of our grammar, we lay the groundwork for how a user's data analysis questions can be operationalized and automated as a set of hypotheses (a hypothesis space). We demonstrate that our grammar-based approach for analysis tasks can provide a systematic method towards unifying three disparate spaces in visualization research: the hypotheses a dataset can express (a data hypothesis space), the hypotheses a user would like to refine or verify through analysis (an analysis hypothesis space), and the hypotheses a visualization design is capable of supporting (a visualization hypothesis space). We illustrate how the formalization of these three spaces can inform future research in visualization evaluation, knowledge elicitation, analytic provenance, and visualization recommendation by using a shared language for hypotheses. Finally, we compare our proposed grammar-based approach with existing visual analysis models and discuss the potential of a new hypothesis-driven theory of visual analytics.
翻译:我们提出了一种表达视觉数据分析中假设的语法,以形式化先前抽象的“分析任务”概念。通过我们的语法,我们为用户的数据分析问题如何作为一组假设(假设空间)操作和自动化奠定了基础。我们证明了我们基于语法的分析任务方法能够提供一种系统方法来统一可视化研究中三个不同的空间:一个数据集可以表达的假设(数据假设空间),用户希望通过分析来细化或验证的假设(分析假设空间)和可视化设计支持的假设(可视化假设空间)。我们演示了这些三个空间的形式化如何通过使用假设的共享语言来为可视化评估、知识引导、分析可追溯性和可视化推荐的未来研究提供信息。最后,我们将我们提出的基于语法的方法与现有的视觉分析模型进行了比较,并讨论了一种新的假设驱动的视觉分析理论的潜力。