We present a grammar for expressing hypotheses in visual data analysis to formalize the previously abstract notion of "analysis tasks." Through the lens of our grammar, we lay the groundwork for how a user's data analysis questions can be operationalized and automated as a set of hypotheses (a hypothesis space). We demonstrate that our grammar-based approach for analysis tasks can provide a systematic method towards unifying three disparate spaces in visualization research: the hypotheses a dataset can express (a data hypothesis space), the hypotheses a user would like to refine or verify through analysis (an analysis hypothesis space), and the hypotheses a visualization design is capable of supporting (a visualization hypothesis space). We illustrate how the formalization of these three spaces can inform future research in visualization evaluation, knowledge elicitation, analytic provenance, and visualization recommendation by using a shared language for hypotheses. Finally, we compare our proposed grammar-based approach with existing visual analysis models and discuss the potential of a new hypothesis-driven theory of visual analytics.


翻译:我们提出了一种表达视觉数据分析中假设的语法,以形式化先前抽象的“分析任务”概念。通过我们的语法,我们为用户的数据分析问题如何作为一组假设(假设空间)操作和自动化奠定了基础。我们证明了我们基于语法的分析任务方法能够提供一种系统方法来统一可视化研究中三个不同的空间:一个数据集可以表达的假设(数据假设空间),用户希望通过分析来细化或验证的假设(分析假设空间)和可视化设计支持的假设(可视化假设空间)。我们演示了这些三个空间的形式化如何通过使用假设的共享语言来为可视化评估、知识引导、分析可追溯性和可视化推荐的未来研究提供信息。最后,我们将我们提出的基于语法的方法与现有的视觉分析模型进行了比较,并讨论了一种新的假设驱动的视觉分析理论的潜力。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
【2022新书】Python数据分析第三版,579页pdf
专知会员服务
244+阅读 · 2022年8月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月21日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员