In recent years, distributional language representation models have demonstrated great practical success. At the same time, the need for interpretability has elicited questions on their intrinsic properties and capabilities. Crucially, distributional models are often inconsistent when dealing with compositional phenomena in natural language, which has significant implications for their safety and fairness. Despite this, most current research on compositionality is directed towards improving their performance on similarity tasks only. This work takes a different approach, and proposes a methodology for measuring compositional behavior in contemporary language models. Specifically, we focus on adjectival modifier phenomena in adjective-noun phrases. We introduce three novel tests of compositional behavior inspired by Montague semantics. Our experimental results indicate that current neural language models behave according to the expected linguistic theories to a limited extent only. This raises the question of whether these language models are not able to capture the semantic properties we evaluated, or whether linguistic theories from Montagovian tradition would not match the expected capabilities of distributional models.


翻译:

0
下载
关闭预览

相关内容

神经语言模型(Neural Language Model,NLM)是一类用来克服维数灾难的语言模型,它使用词的分布式表示对自然语言序列建模。不同于基于类的n-gram模型,神经语言模型在能够识别两个相似的词,并且不丧失将每个词编码为彼此不同的能力。神经语言模型共享一个词(及其上下文)和其他类似词。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员