This study investigates the impact of biased language, specifically 'Words that Wound,' on sentiment analysis in a dataset of 45,379 South Korean daily economic news articles. Using Word2Vec, cosine similarity, and an expanded lexicon, we analyzed the influence of these words on news titles' sentiment scores. Our findings reveal that incorporating biased language significantly amplifies sentiment scores' intensity, particularly negativity. The research examines the effect of heightened negativity in news titles on the KOSPI200 index using linear regression and sentiment analysis. Results indicate that the augmented sentiment lexicon (Sent1000), which includes the top 1,000 negative words with high cosine similarity to 'Crisis,' more effectively captures the impact of news sentiment on the stock market index than the original KNU sentiment lexicon (Sent0). The ARDL model and Impulse Response Function (IRF) analyses disclose that Sent1000 has a stronger and more persistent impact on KOSPI200 compared to Sent0. These findings emphasize the importance of understanding language's role in shaping market dynamics and investor sentiment, particularly the impact of negatively biased language on stock market indices. The study highlights the need for considering context and linguistic nuances when analyzing news content and its potential effects on public opinion and market dynamics.
翻译:用偏见性语言影响新闻情绪和股市指数:以韩国经济新闻为例
本研究调查了“Words that Wound”对新闻情绪分析及股票市场指数的影响,研究选取了45,379篇韩国经济日报新闻。利用Word2Vec、余弦相似度和扩展的词汇表,我们分析了这些词语对新闻标题情感得分的影响。研究发现,加入偏见性语言显著增强情感得分的强度,尤其是负面情感。本研究还通过线性回归和情感分析探究新闻标题中的高负面情感对KOSPI200指数的影响。结果表明,扩展的情感词汇表(Sent1000)更能有效捕捉新闻情感对股票市场指数的影响,该表包括与“Crisis”具有高余弦相似度的前1000个负面词汇。ARDL模型和脉冲响应函数(IRF)分析显示,Sent1000对KOSPI200有更强和更持久的影响,比Sent0更为显著。这些发现强调了理解语言在塑造市场动态和投资者情绪中的作用的重要性,特别是负面偏见性语言对股票市场指数的影响。本研究强调了分析新闻内容及其对公众舆论和市场动态的潜在影响时,需要考虑上下文和语言细微差别的重要性。