Code-switching in automatic speech recognition (ASR) is an important challenge due to globalization. Recent research in multilingual ASR shows potential improvement over monolingual systems. We study key issues related to multilingual modeling for ASR through a series of large-scale ASR experiments. Our innovative framework deploys a multi-graph approach in the weighted finite state transducers (WFST) framework. We compare our WFST decoding strategies with a transformer sequence to sequence system trained on the same data. Given a code-switching scenario between Arabic and English languages, our results show that the WFST decoding approaches were more suitable for the intersentential code-switching datasets. In addition, the transformer system performed better for intrasentential code-switching task. With this study, we release an artificially generated development and test sets, along with ecological code-switching test set, to benchmark the ASR performance.
翻译:自动语音识别(ASR)的代码转换是全球化带来的一个重大挑战。最近对多种语言的ASR的研究显示,单语系统有潜在的改进。我们通过一系列大规模 ASR 实验,研究与ASR 的多语言模型相关的关键问题。我们的创新框架在加权限量转换器(WFST)框架中采用了多语种方法。我们比较了我们的WFST解码策略和变压器序列与根据同一数据训练的序列系统。鉴于阿拉伯语和英语之间的代码转换情景,我们的结果显示WFST解码方法更适合中间代码转换数据集。此外,变压器系统在正常代碼转换任务中表现更好。我们通过这项研究,释放了人工生成的开发和测试装置,以及生态代码转换测试装置,以作为ASR性能的基准。