A query game is a pair of a set $Q$ of queries and a set $\mathcal{F}$ of functions, or codewords $f:Q\rightarrow \mathbb{Z}.$ We think of this as a two-player game. One player, Codemaker, picks a hidden codeword $f\in \mathcal{F}$. The other player, Codebreaker, then tries to determine $f$ by asking a sequence of queries $q\in Q$, after each of which Codemaker must respond with the value $f(q)$. The goal of Codebreaker is to uniquely determine $f$ using as few queries as possible. Two classical examples of such games are coin-weighing with a spring scale, and Mastermind, which are of interest both as recreational games and for their connection to information theory. In this paper, we will present a general framework for finding short solutions to query games. As applications, we give new self-contained proofs of the query complexity of variations of the coin-weighing problems, and prove new results that the deterministic query complexity of Mastermind with $n$ positions and $k$ colors is $\Theta(n \log k/ \log n + k)$ if only black-peg information is provided, and $\Theta(n \log k / \log n + k/n)$ if both black- and white-peg information is provided. In the deterministic setting, these are the first up to constant factor optimal solutions to Mastermind known for any $k\geq n^{1-o(1)}$.


翻译:查询游戏是一组查询集Q和函数集F(或码字f:Q-> Z)之间的关系。我们认为这是一个两个玩家的游戏。一个玩家,称为Codemaker,选择隐藏码字f∈F。另一个玩家Codebreaker试图通过询问一系列查询q∈Q,在每一次Codemaker必须以值f(q)回答的情况下确定f。Codebreaker的目标是尽可能少地使用查询来唯一确定f。两个经典的示例是带弹簧秤的硬币称重和猜数字游戏Mastermind,这些都与信息理论有关且具有娱乐性。在本文中,我们将提供一种查找查询游戏简短解决方案的通用框架。作为应用程序,我们提供了硬币称重问题变体查询复杂度的新的自包含证明,并证明了Mastermind在黑色标记信息仅提供的情况下的确定性查询复杂度为Θ(nlog k / logn + k),并且在黑色和白色标记信息都提供的情况下,其确定性查询复杂度为Θ(nlog k / logn + k / n)。在确定性设置中,对于任何k> = n ^(1-o(1)),这些都是第一次获得Mastermind的最优解,最多为常数。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
68+阅读 · 2022年9月30日
【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
125+阅读 · 2021年7月14日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员