We propose a new residual-based a posteriori error estimator for discontinuous Galerkin discretizations of time-harmonic Maxwell's equations in first-order form. We establish that the estimator is reliable and efficient, and the dependency of the reliability and efficiency constants on the frequency is analyzed and discussed. The proposed estimates generalize similar results previously obtained for the Helmholtz equation and conforming finite element discretization of Maxwell's equations. In addition, for the discontinuous Galerkin scheme considered here, we also show that the proposed estimator is asymptotically constant-free for smooth solutions. We also present two-dimensional numerical examples that highlight our key theoretical findings and suggest that the proposed estimator is suited to drive $h$- and $hp$-adaptive iterative refinements.
翻译:我们提出一个新的基于剩余误差的后遗误估计器,用于对一阶式的时间-调和 Maxwell 方程式进行不连续的 Galerkin 分解。 我们确定测算器可靠且高效,对频率的可靠性和效率常数的依赖性进行分析和讨论。 拟议的估算法概括了以前为Helmholtz 方程式取得的类似结果,并符合Maxwell 方程式的有限分解元素。 此外,对于此处考虑的不连续的 Galerkin 方程式,我们还表明,拟议的测算器对于平滑的解决方案来说,是暂时无常态的。 我们还提出了二维数字示例,突出我们的主要理论发现,并建议拟议的测算器适合于驱动美元和美元适应性迭接改进。