The vast majority of existing Distributed Computing literature about mobile robotic swarms considers computability issues: characterizing the set of system hypotheses that enables problem solvability. By contrast, the focus of this work is to investigate complexity issues: obtaining quantitative results about a given problem that admits solutions. Our quantitative measurements rely on a newly developed simulation framework to benchmark pen and paper designs. First, we consider the maximum traveled distance when gathering robots at a given location, not known beforehand (both in the two robots and in the n robots settings) in the classical OBLOT model, for the FSYNC, SSYNC, and ASYNC schedulers. This particular metric appears relevant as it correlates closely to what would be real world fuel consumption. Then, we introduce the possibility of errors in the vision of robots, and assess the behavior of known rendezvous (aka two robots gathering) and leader election protocols when sensors are unreliable. We also introduce two new algorithms, one for fuel efficient convergence, and one for leader election, that operate reliably despite unreliable sensors.


翻译:绝大多数关于移动机器人群的分布式计算机现有文献都考虑了可计算性问题:将一套系统假设描述成能够造成问题溶解的系统假设特征。 相反,这项工作的重点是调查复杂问题:获得对特定问题的量化结果,从而承认解决办法。我们的定量测量依靠新开发的模拟框架来确定笔和纸张设计的基准。首先,我们考虑在特定地点收集机器人时的最大距离,这些机器人事先没有在传统OBLOT模型(FSYNC、SSYNC和ASYNC调度器)中(在两个机器人和n机器人设置中)被识别。这一特定指标似乎与现实世界燃料消耗密切相关。然后,我们在机器人的愿景中引入错误的可能性,并在传感器不可靠的情况下评估已知的集合(两个机器人聚集)和领导选举协议的行为。我们还引入了两种新的算法,一种是燃料高效融合法,另一种是领导人选举法,尽管传感器不可靠,但操作可靠。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
5+阅读 · 2019年3月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
5+阅读 · 2019年3月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员