Nano quadcopters are ideal for gas source localization (GSL) as they are safe, agile and inexpensive. However, their extremely restricted sensors and computational resources make GSL a daunting challenge. In this work, we propose a novel bug algorithm named `Sniffy Bug', which allows a fully autonomous swarm of gas-seeking nano quadcopters to localize a gas source in an unknown, cluttered and GPS-denied environments. The computationally efficient, mapless algorithm foresees in the avoidance of obstacles and other swarm members, while pursuing desired waypoints. The waypoints are first set for exploration, and, when a single swarm member has sensed the gas, by a particle swarm optimization-based procedure. We evolve all the parameters of the bug (and PSO) algorithm, using our novel simulation pipeline, `AutoGDM'. It builds on and expands open source tools in order to enable fully automated end-to-end environment generation and gas dispersion modeling, allowing for learning in simulation. Flight tests show that Sniffy Bug with evolved parameters outperforms manually selected parameters in cluttered, real-world environments.
翻译:纳米 纳米四氯甲烷是气体源本地化的理想方法( GSL), 因为它们是安全、 灵活和廉价的。 然而, 它们极受限制的传感器和计算资源使得GSL 成为了艰巨的挑战。 在这项工作中, 我们提出一个名为“ 喷雾虫” 的新型错误算法, 允许完全自主的气搜索纳米四氯甲烷的群温, 在一个未知、 杂乱和 GPS 封闭的环境中将气体源本地化。 计算高效、 无映射的算法预示着避免障碍和其他群落成员, 同时追求理想的路径点。 路径点是首先为探索而设的, 当单个的暖点成员通过粒子暖化优化程序感知气体时。 我们用我们的新模拟管道“ 自动GDMDM ”, 开发并扩展开放源工具, 以便能够完全自动化的端到端环境生成和气体扩散模型, 从而在模拟中学习。 飞行测试显示Sniffy Bug 和进化参数超越了世界的手动参数 。