Nano quadcopters are ideal for gas source localization (GSL) as they are safe, agile and inexpensive. However, their extremely restricted sensors and computational resources make GSL a daunting challenge. In this work, we propose a novel bug algorithm named `Sniffy Bug', which allows a fully autonomous swarm of gas-seeking nano quadcopters to localize a gas source in an unknown, cluttered and GPS-denied environments. The computationally efficient, mapless algorithm foresees in the avoidance of obstacles and other swarm members, while pursuing desired waypoints. The waypoints are first set for exploration, and, when a single swarm member has sensed the gas, by a particle swarm optimization-based procedure. We evolve all the parameters of the bug (and PSO) algorithm, using our novel simulation pipeline, `AutoGDM'. It builds on and expands open source tools in order to enable fully automated end-to-end environment generation and gas dispersion modeling, allowing for learning in simulation. Flight tests show that Sniffy Bug with evolved parameters outperforms manually selected parameters in cluttered, real-world environments.


翻译:纳米 纳米四氯甲烷是气体源本地化的理想方法( GSL), 因为它们是安全、 灵活和廉价的。 然而, 它们极受限制的传感器和计算资源使得GSL 成为了艰巨的挑战。 在这项工作中, 我们提出一个名为“ 喷雾虫” 的新型错误算法, 允许完全自主的气搜索纳米四氯甲烷的群温, 在一个未知、 杂乱和 GPS 封闭的环境中将气体源本地化。 计算高效、 无映射的算法预示着避免障碍和其他群落成员, 同时追求理想的路径点。 路径点是首先为探索而设的, 当单个的暖点成员通过粒子暖化优化程序感知气体时。 我们用我们的新模拟管道“ 自动GDMDM ”, 开发并扩展开放源工具, 以便能够完全自动化的端到端环境生成和气体扩散模型, 从而在模拟中学习。 飞行测试显示Sniffy Bug 和进化参数超越了世界的手动参数 。

0
下载
关闭预览

相关内容

程序猿的天敌 有时是一个不能碰的magic
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员