Sign language gloss translation aims to translate the sign glosses into spoken language texts, which is challenging due to the scarcity of labeled gloss-text parallel data. Back translation (BT), which generates pseudo-parallel data by translating in-domain spoken language texts into sign glosses, has been applied to alleviate the data scarcity problem. However, the lack of large-scale high-quality domain spoken language text data limits the effect of BT. In this paper, to overcome the limitation, we propose a Prompt based domain text Generation (PGEN) approach to produce the large-scale in-domain spoken language text data. Specifically, PGEN randomly concatenates sentences from the original in-domain spoken language text data as prompts to induce a pre-trained language model (i.e., GPT-2) to generate spoken language texts in a similar style. Experimental results on three benchmarks of sign language gloss translation in varied languages demonstrate that BT with spoken language texts generated by PGEN significantly outperforms the compared methods. In addition, as the scale of spoken language texts generated by PGEN increases, the BT technique can achieve further improvements, demonstrating the effectiveness of our approach. We release the code and data for facilitating future research in this field.


翻译:由于缺少标签的粗略文本平行数据,将手语符号翻译为口语文本,这具有挑战性,因为缺少贴有标签的粗略文本平行数据,因此很难将手语符号翻译为口语文本。 背面翻译(BT)通过将内部口语原文翻译为手语符号,生成假单数数据,用于缓解数据稀缺问题;然而,缺乏大规模高品质域域口语文本数据限制了BT的效果。 本文中,为了克服限制,我们建议采用快速的域域域文本生成(PGEN)方法来生成大型口语文本数据。具体地说,PGEN随机将原主语文本数据中的句子拼拼贴,以促使预先培训的语言模式(即GPT-2)以类似的方式生成口语文本文本。 手语文本翻译的三个基准的实验结果显示,PGEN生成的口语文本比比较方法要差得多。此外,PGEN生成的口语文本规模越大,BT技术方法可以进一步提升,促进我们将来的实地研究。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员