Searching for local communities is an important research problem that supports advanced data analysis in various complex networks, such as social networks, collaboration networks, cellular networks, etc. The evolution of such networks over time has motivated several recent studies to identify local communities in dynamic networks. However, these studies only utilize the aggregation of disjoint structural information to measure the quality and ignore the reliability of the communities in a continuous time interval. To fill this research gap, we propose a novel $(\theta,k)$-$core$ reliable community (CRC) model in the weighted dynamic networks, and define the problem of \textit{most reliable community search} that couples the desirable properties of connection strength, cohesive structure continuity, and the maximal member engagement. To solve this problem, we first develop a novel edge filtering based online CRC search algorithm that can effectively filter out the trivial edge information from the networks while searching for a \textit{reliable} community. Further, we propose an index structure, Weighted Core Forest-Index (WCF-index), and devise an index-based dynamic programming CRC search algorithm, that can prune a large number of insignificant intermediate results and support efficient query processing. Finally, we conduct extensive experiments systematically to demonstrate the efficiency and effectiveness of our proposed algorithms on eight real datasets under various experimental settings.
翻译:寻找当地社区是一个重要的研究问题,它支持在社会网络、协作网络、蜂窝网络等各种复杂网络中进行先进的数据分析。 随着时间的推移,这种网络的演变促使最近进行了几项研究,以在动态网络中查明当地社区。然而,这些研究只利用不连贯的结构信息汇总,以连续的时间间隔衡量社区的质量,忽视社区的可靠性。为了填补这一研究差距,我们提议在加权动态网络中采用一个新的$(theta,k)-$-$核心值的可靠社区(CRC)模型,并界定了以下问题: 将连接强度、凝聚力结构连续性和最大成员参与等可取的特性结合起来。为了解决这个问题,我们首先开发一种基于在线CRC的新型边缘过滤算法,这种算法能够有效地从网络中过滤微小的边缘信息,同时寻找一个可信任的共同体。 此外,我们提议了一个指数结构,即加权核心森林-Index(WCF-index),并设计一个基于索引的动态CRC搜索算法问题,它可以同时结合大量基于连接性结构的特性,以及最大成员参与。为了解决这个问题,我们首先开发出一种基于无意义的中间结果和高效的大规模实验环境,然后支持我们提议的八项的实验性数据处理。