Most online multi-object trackers perform object detection stand-alone in a neural net without any input from tracking. In this paper, we present a new online joint detection and tracking model, TraDeS (TRAck to DEtect and Segment), exploiting tracking clues to assist detection end-to-end. TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features for improving current object detection and segmentation. Effectiveness and superiority of TraDeS are shown on 4 datasets, including MOT (2D tracking), nuScenes (3D tracking), MOTS and Youtube-VIS (instance segmentation tracking). Project page: https://jialianwu.com/projects/TraDeS.html.
翻译:大多数在线多物体跟踪器在神经网中独立进行物体探测,没有任何跟踪信息。本文介绍一个新的在线联合探测和跟踪模型TraDeS(跟踪到检测点和段),利用跟踪线索协助检测端到端。TraDeS推断物体跟踪被成本量抵消,成本量用来宣传先前的物体特征,以改进当前物体探测和分离。TraDeS的效力和优越性显示在4个数据集上,包括MOT(2D跟踪)、nuScenses(3D跟踪)、MOTS和Youtube-VIS(隔离跟踪)。项目网页:https://jialwu.com/projects/TraDeS.html。