In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems. TransTrack leverages the transformer architecture, which is an attention-based query-key mechanism. It applies object features from the previous frame as a query of the current frame and introduces a set of learned object queries to enable detecting new-coming objects. It builds up a novel joint-detection-and-tracking paradigm by accomplishing object detection and object association in a single shot, simplifying complicated multi-step settings in tracking-by-detection methods. On MOT17 and MOT20 benchmark, TransTrack achieves 74.5\% and 64.5\% MOTA, respectively, competitive to the state-of-the-art methods. We expect TransTrack to provide a novel perspective for multiple object tracking. The code is available at: \url{https://github.com/PeizeSun/TransTrack}.
翻译:在这项工作中,我们提出TransTrack,这是一个解决多物体跟踪问题的简单而有效的计划。TransTrack利用变压器结构,这是一个基于关注的查询键机制。它将前一个框架的物体特征用作当前框架的查询,并推出一套学习的物体查询,以便能够探测新来的物体。它通过一次性完成物体探测和物体关联,建立一个全新的联合探测和跟踪模式,简化了跟踪和探测方法中复杂的多步骤设置。在MOT17和MOT20基准上,TransTracrak分别达到74.5 ⁇ 和64.5 ⁇ MOTA,与最新技术方法相比具有竞争力。我们期待TransTracrack为多重物体跟踪提供新的视角。该代码可以在以下查阅: url{https://github.com/PeizeSun/TransTracack}。