Let ${\cal P}$ be a convex polygon in the plane, and let ${\cal T}$ be a triangulation of ${\cal P}$. An edge $e$ in ${\cal T}$ is called a diagonal if it is shared by two triangles in ${\cal T}$. A {\em flip} of a diagonal $e$ is the operation of removing $e$ and adding the opposite diagonal of the resulting quadrilateral to obtain a new triangulation of ${\cal P}$ from ${\cal T}$. The {\em flip distance} between two triangulations of ${\cal P}$ is the minimum number of flips needed to transform one triangulation into the other. The {\sc Convex Flip Distance} problem asks if the flip distance between two given triangulations of ${\cal P}$ is at most $k$, for some given parameter $k$. We present an FPT algorithm for the {\sc Convex Flip Distance} problem that runs in time $O(3.82^{k})$ and uses polynomial space, where $k$ is the number of flips. This algorithm significantly improves the previous best FPT algorithms for the problem.
翻译:让美元(cal P) 美元在平面上成为锥形多边形,让美元(cal T) 美元成为美元(cal P) 美元的三角形。 以美元(cal T) 美元计算, 以美元计算, 以美元计算, 以美元计算。 以美元计算, 以美元计算, 以美元计算, 以美元计算。 以美元计算, 以美元计算, 以美元计算, 以美元计算, 以美元计算。 以美元计算, 以美元计算, 以美元计算, 以美元计算, 以美元计算, 以美元计算, 以美元计, 以美元计算, 以美元计算, 以美元计, 以美元计, 以美元计算, 以美元计算, 以美元计算, 以美元计算, 以美元计算, 以 美元计算。