Given an undirected graph $G=(V,E)$ with a nonnegative edge length function and an integer $p$, $0 < p < |V|$, the $p$-centdian problem is to find $p$ vertices (called the {\it centdian set}) of $V$ such that the {\it eccentricity} plus {\it median-distance} is minimized, in which the {\it eccentricity} is the maximum (length) distance of all vertices to their nearest {\it centdian set} and the {\it median-distance} is the total (length) distance of all vertices to their nearest {\it centdian set}. The {\it eccentricity} plus {\it median-distance} is called the {\it centdian-distance}. The purpose of the $p$-centdian problem is to find $p$ open facilities (servers) which satisfy the quality-of-service of the minimum total distance ({\it median-distance}) and the maximum distance ({\it eccentricity}) to their service customers, simultaneously. If we converse the two criteria, that is given the bound of the {\it centdian-distance} and the objective function is to minimize the cardinality of the {\it centdian set}, this problem is called the converse centdian problem. In this paper, we prove the $p$-centdian problem is NP-Complete. Then we design the first non-trivial brute force exact algorithms for the $p$-centdian problem and the converse centdian problem, respectively. Finally, we design two approximation algorithms for both problems.


翻译:以非方向图形 $G= (V,E) 美元,具有非负向边缘功能和整数美元, $0 < p < {V} 美元, 美元中程} 问题在于找到$P$的顶点(长度) (称为 $it cardian set} ), 美元中途, 美元中途 。 美元问题的目的是找到$p( 储量), 满足最低总距离( 美元中程) 的最大( 长度) ; 美元中途, 美元中程 问题在于所有顶点的总( 美元中程), 美元中程 问题在于所有顶点的总( 长度) 距离( 长度) ; 所有顶点的顶点( 美元中位 ) 的顶点( 美元中程值 ) 。 美元问题在于 最低总距离( 美元中程 ) 的顶点( ) 和 最远点( 我们的中间值 ), 的中间值 问题在于 。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员