Satellite remote sensing presents a cost-effective solution for synoptic flood monitoring, and satellite-derived flood maps provide a computationally efficient alternative to numerical flood inundation models traditionally used. While satellites do offer timely inundation information when they happen to cover an ongoing flood event, they are limited by their spatiotemporal resolution in terms of their ability to dynamically monitor flood evolution at various scales. Constantly improving access to new satellite data sources as well as big data processing capabilities has unlocked an unprecedented number of possibilities in terms of data-driven solutions to this problem. Specifically, the fusion of data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions, which have low spatial but high temporal resolutions could yield high-resolution flood inundation at a daily scale. Here a Convolutional-Neural-Network is trained using flood inundation maps derived from Sentinel-1 Synthetic Aperture Radar and various hydrological, topographical, and land-use based predictors for the first time, to predict high-resolution probabilistic maps of flood inundation. The performance of UNet and SegNet model architectures for this task is evaluated, using flood masks derived from Sentinel-1 and Sentinel-2, separately with 95 percent-confidence intervals. The Area under the Curve (AUC) of the Precision Recall Curve (PR-AUC) is used as the main evaluation metric, due to the inherently imbalanced nature of classes in a binary flood mapping problem, with the best model delivering a PR-AUC of 0.85.


翻译:卫星遥感为综合洪水监测提供了一个成本效益高的解决方案,而来自卫星的洪水地图为传统上使用的数字洪水淹没模型提供了一种计算效率高的替代方法。卫星在覆盖正在发生的洪水事件时确实提供了及时的淹没信息,但卫星在动态监测各种规模的洪水演变能力方面却受到其时空分辨率的限制。不断改进对新的卫星数据源的利用,以及巨大的数据处理能力为解决这一问题的数据驱动解决方案提供了空前多的可能性。具体地说,从具有高度空间和低时间分辨率的Copernicus Sentinel卫星等卫星上的数据汇集了及时的淹没信息,而美国航天局的SMAP和GPM飞行任务的数据则具有低空间但高时间分辨率的分辨率分辨率,因而无法在日常规模上产生高分辨率的洪水淹没。在这里,利用Sentinel-1模型合成孔径雷达和各种水文、地形图和基于土壤的预测仪表等数据,在Segernic Sentin SentinSentinal中预测高分辨率分辨率,在Seal-Airmill IM 上,在Siral-Settrial ASimal IM IM 上,在Siral-Sir ASir ASir IM ASir IM IM IM ASIM ASIM AS AS AS 上,在使用这一模型中,在使用一个最精制的S-SIM AS AS AS AS AS AS AS AS IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM 上,在使用该 IM 上进行该 AS AS AS AS AS AS AS AS AS IM IM 上进行该 上进行该 IM AS 上进行该 上进行 上进行 上进行 和 和 和 和 进行该 和 进行 进行 AS AS AS AS AS 进行 进行最佳 AS AS AS AS AS 进行 进行 进行 进行最佳

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月17日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员