Several websites improve their security and avoid dangerous Internet attacks by implementing CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart), a type of verification to identify whether the end-user is human or a robot. The most prevalent type of CAPTCHA is text-based, designed to be easily recognized by humans while being unsolvable towards machines or robots. However, as deep learning technology progresses, development of convolutional neural network (CNN) models that predict text-based CAPTCHAs becomes easier. The purpose of this research is to investigate the flaws and vulnerabilities in the CAPTCHA generating systems in order to design more resilient CAPTCHAs. To achieve this, we created CapNet, a Convolutional Neural Network. The proposed platform can evaluate both numerical and alphanumerical CAPTCHAs


翻译:一些网站通过实施CAPTCHA(完整自动化公共图示测试以告诉计算机和人类Apart)来改善安全,避免危险的互联网攻击,CAPTCHA是一种核查,以确定终端用户是人类还是机器人。最普遍的是文本型CAPTCHA,其设计容易为人类识别,同时对机器或机器人无法溶解。然而,随着深层次的学习技术的进步,发展预测基于文本的CAPTCHA的动态神经网络模型(CNN)变得更加容易。这项研究的目的是调查CAPTCHA生成系统中的缺陷和弱点,以便设计更具复原力的CAPTCHA。为了实现这一目标,我们创建了CapNet,一个革命神经网络。拟议的平台可以评估数字和数字型CAPTCHA。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员