Generally speaking, the model training for recommender systems can be based on two types of data, namely explicit feedback and implicit feedback. Moreover, because of its general availability, we see wide adoption of implicit feedback data, such as click signal. There are mainly two challenges for the application of implicit feedback. First, implicit data just includes positive feedback. Therefore, we are not sure whether the non-interacted items are really negative or positive but not displayed to the corresponding user. Moreover, the relevance of rare items is usually underestimated since much fewer positive feedback of rare items is collected compared with popular ones. To tackle such difficulties, both pointwise and pairwise solutions are proposed before for unbiased relevance learning. As pairwise learning suits well for the ranking tasks, the previously proposed unbiased pairwise learning algorithm already achieves state-of-the-art performance. Nonetheless, the existing unbiased pairwise learning method suffers from high variance. To get satisfactory performance, non-negative estimator is utilized for practical variance control but introduces additional bias. In this work, we propose an unbiased pairwise learning method, named UPL, with much lower variance to learn a truly unbiased recommender model. Extensive offline experiments on real world datasets and online A/B testing demonstrate the superior performance of our proposed method.


翻译:推荐系统的模型训练一般基于显式反馈和隐式反馈两种数据。由于隐式反馈数据普遍存在,如点击信号,因此得到了广泛应用。然而,隐式反馈应用面临两个主要挑战。首先,隐式数据只包含正反馈,因此无法确定非交互项是真正的负面还是未展示给用户的正面反馈。此外,由于罕见商品的正面反馈远远少于热门商品,因此通常低估罕见商品的相关性。为解决这些困难,先前已提出点对和配对解决方案以实现无偏相关性学习。因为配对学习非常适合排序任务,先前提出的无偏配对学习算法已经实现了最先进的性能。然而,现有的无偏配对学习方法面临着较高的方差问题。为获得令人满意的性能,实际方差控制采用了非负估计器,但会引入额外的偏差。在这项工作中,我们提出了一种名为UPL的无偏配对学习方法,具有更低的方差,以学习真正无偏的推荐模型。对真实世界数据集的广泛离线实验和在线A / B测试表明了我们提出的方法的优越性能。

0
下载
关闭预览

相关内容

【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
41+阅读 · 2022年8月20日
WWW2022 | Recommendation Unlearning
机器学习与推荐算法
0+阅读 · 2022年6月2日
WWW2022 | 基于因果的推荐算法教程
机器学习与推荐算法
3+阅读 · 2022年5月26日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
41+阅读 · 2022年8月20日
相关资讯
WWW2022 | Recommendation Unlearning
机器学习与推荐算法
0+阅读 · 2022年6月2日
WWW2022 | 基于因果的推荐算法教程
机器学习与推荐算法
3+阅读 · 2022年5月26日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员