Autoencoder can give rise to an appropriate latent representation of the input data, however, the representation which is solely based on the intrinsic property of the input data, is usually inferior to express some semantic information. A typical case is the potential incapability of forming a clear boundary upon clustering of these representations. By encoding the latent representation that not only depends on the content of the input data, but also the semantic of the input data, such as label information, we propose an enhanced autoencoder architecture named semantic autoencoder. Experiments of representation distribution via t-SNE shows a clear distinction between these two types of encoders and confirm the supremacy of the semantic one, whilst the decoded samples of these two types of autoencoders exhibit faint dissimilarity either objectively or subjectively. Based on this observation, we consider adversarial attacks to learning algorithms that rely on the latent representation obtained via autoencoders. It turns out that latent contents of adversarial samples constructed from semantic encoder with deliberate wrong label information exhibit different distribution compared with that of the original input data, while both of these samples manifest very marginal difference. This new way of attack set up by our work is worthy of attention due to the necessity to secure the widespread deep learning applications.
翻译:自动编码器可以产生输入数据的适当潜在代表, 但是, 仅仅基于输入数据内在属性的表示通常比表达某种语义信息要低一些。 一个典型的例子是, 在这些表示组合时, 可能无法形成清晰的边界。 通过编码潜在表示不仅取决于输入数据的内容, 而且还取决于输入数据的语义, 例如标签信息等输入数据的语义学, 我们建议使用一个强化的自动编码器结构, 名为语义自动编码器。 通过 t- SNE 进行的代表性分配实验, 显示了这两种类型的编码器之间的明显区别, 并证实了语义信息的优越性, 而这两种类型的自动编码器的解码样本在客观或主观上都表现出微异。 基于这一观察, 我们考虑对学习依赖通过自动编码器获得的潜在代表的算法进行对抗攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击。 由此发现, 由语义编码编码器和故意错误的标签信息与原始输入数据的不同分布方式, 与原始输入数据的不同, 而经过解算算出这种攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性的