Entity Set Expansion (ESE) is a valuable task that aims to find entities of the target semantic class described by given seed entities. Various Natural Language Processing (NLP) and Information Retrieval (IR) downstream applications have benefited from ESE due to its ability to discover knowledge. Although existing corpus-based ESE methods have achieved great progress, they still rely on corpora with high-quality entity information annotated, because most of them need to obtain the context patterns through the position of the entity in a sentence. Therefore, the quality of the given corpora and their entity annotation has become the bottleneck that limits the performance of such methods. To overcome this dilemma and make the ESE models free from the dependence on entity annotation, our work aims to explore a new ESE paradigm, namely corpus-independent ESE. Specifically, we devise a context pattern generation module that utilizes autoregressive language models (e.g., GPT-2) to automatically generate high-quality context patterns for entities. In addition, we propose the GAPA, a novel ESE framework that leverages the aforementioned GenerAted PAtterns to expand target entities. Extensive experiments and detailed analyses on three widely used datasets demonstrate the effectiveness of our method. All the codes of our experiments are available at https://github.com/geekjuruo/GAPA.
翻译:各种自然语言处理(NLP)和信息检索(IR)下游应用由于能够发现知识而获益于ESE。尽管现有的基于物理的ESE方法已经取得了巨大进展,但它们仍然依赖具有高质量实体信息的公司,并附加了附加说明,因为大多数公司需要通过实体在一句话中的位置获得背景模式。因此,给定公司及其实体的注释质量已成为限制这些方法绩效的瓶颈。为了克服这一困境,并使ESE模型摆脱对实体说明的依赖,我们的工作目标是探索新的ESE模式,即独立于实体的ESE。具体地说,我们设计了一种背景模式生成模块,利用自动反向语言模式(例如GPT-2),为实体自动生成高质量的背景模式。此外,我们建议GAPA(GESE)是一个利用上述GenerAdivePA(Generub)/Acentrobro 数据模型的新型框架,以广泛展示我们Generabreabroal Affective agress agroductions)使用的所有数据模型。