For an ensemble of nonlinear systems that model, for instance, molecules or photonic systems, we propose a method that finds efficiently the configuration that has prescribed transfer properties. Specifically, we use physics-informed machine-learning (PIML) techniques to find the parameters for the efficient transfer of an electron (or photon) to a targeted state in a non-linear dimer. We create a machine learning model containing two variables, $\chi_D$, and $\chi_A$, representing the non-linear terms in the donor and acceptor target system states. We then introduce a data-free physics-informed loss function as $1.0 - P_j$, where $P_j$ is the probability, the electron being in the targeted state, $j$. By minimizing the loss function, we maximize the occupation probability to the targeted state. The method recovers known results in the Targeted Energy Transfer (TET) model, and it is then applied to a more complex system with an additional intermediate state. In this trimer configuration, the PIML approach discovers desired resonant paths from the donor to acceptor units. The proposed PIML method is general and may be used in the chemical design of molecular complexes or engineering design of quantum or photonic systems.
翻译:对于模型的非线性系统组合,例如分子或光子系统,我们建议一种能够有效地找到配置要求转移特性的有效配置的方法。具体地说,我们使用物理上知情的机器学习(PIML)技术寻找在非线性二分仪中将电子(或光子)有效传输到目标状态的参数。我们创建了一个机器学习模型,其中包含两个变量,即$\chi_D$和$\chi_A$,代表捐赠者和接受者系统国家的非线性条件。然后,我们引入了一个无数据物理上知情损失功能为1.0-P_j$,其中$-j$是概率,电子处于目标状态,$j$。通过最大限度地减少损失功能,我们将占用概率最大化到目标状态。方法恢复了定向能源传输模式中已知的结果,然后应用到一个更复杂的系统,并增加了一个中间状态。在这个三角配置中,我们采用PIML方法从捐赠者那里发现一个希望从捐赠者接收路径,即电子在目标状态下,或者使用光子设计系统。拟议的PIM法可能是用于一般设计或光基质设计系统。