Pre-trained encoders are general-purpose feature extractors that can be used for many downstream tasks. Recent progress in self-supervised learning can pre-train highly effective encoders using a large volume of unlabeled data, leading to the emerging encoder as a service (EaaS). A pre-trained encoder may be deemed confidential because its training requires lots of data and computation resources as well as its public release may facilitate misuse of AI, e.g., for deepfakes generation. In this paper, we propose the first attack called StolenEncoder to steal pre-trained image encoders. We evaluate StolenEncoder on multiple target encoders pre-trained by ourselves and three real-world target encoders including the ImageNet encoder pre-trained by Google, CLIP encoder pre-trained by OpenAI, and Clarifai's General Embedding encoder deployed as a paid EaaS. Our results show that our stolen encoders have similar functionality with the target encoders. In particular, the downstream classifiers built upon a target encoder and a stolen one have similar accuracy. Moreover, stealing a target encoder using StolenEncoder requires much less data and computation resources than pre-training it from scratch. We also explore three defenses that perturb feature vectors produced by a target encoder. Our results show these defenses are not enough to mitigate StolenEncoder.


翻译:经过事先训练的编码器是可用于许多下游任务的通用特征提取器。最近自我监督的学习进展可以使用大量未经贴标签的数据对高效的编码器进行预演,从而导致正在出现的编码器服务(EaaS)。经过事先训练的编码器可以被视为保密,因为其培训需要大量数据和计算资源以及公开发布可能会助长对AI的滥用,例如,用于深媒生成。在本文中,我们提议了第一次称为“被盗编码器”的袭击,以窃取经过预先训练的图像编码器。我们评估了由自己预先训练的多个目标编码器和三个真实世界目标编码器的被盗编码器,包括谷歌以前训练的图像网络编码器、OpenAI预先训练的CLIP编码器,以及克拉里法伊的通用内嵌入式编码器总编码器,作为付款的 EaaS。我们的结果表明,我们被盗的编码器与目标编码器的功能是相似的。具体来说,在使用目标编码器的下游的编码器上建造了多个目标的编码编码编码编码器, 也要求用一个类似的方法进行精确性的数据。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员