A fully discrete and fully explicit low-regularity integrator is constructed for the one-dimensional periodic cubic nonlinear Schr\"odinger equation. The method can be implemented by using fast Fourier transform with $O(N\ln N)$ operations at every time level, and is proved to have an $L^2$-norm error bound of $O(\tau\sqrt{\ln(1/\tau)}+N^{-1})$ for $H^1$ initial data, without requiring any CFL condition, where $\tau$ and $N$ denote the temporal stepsize and the degree of freedoms in the spatial discretisation, respectively.
翻译:为单维定期立方体非线性Schr\'odinger方程式建造了完全离散和完全明确的低常规集成器。该方法可以通过使用快速的Fourier变换法,每个时间级的运行费用为$O(N\lnN),并被证明有一个$L2$-norm的错误,包括$O(tau\sqrt=ln(1/\tau) ⁇ ⁇ N ⁇ ⁇ 1}$H1$的初步数据,而不需要任何CFL条件,即$\tau$和$N$分别表示空间离散时间级和自由程度。