In neuroscience, the distribution of a decision time is modelled by means of a one-dimensional Fokker--Planck equation with time-dependent boundaries and space-time-dependent drift. Efficient approximation of the solution to this equation is required, e.g., for model evaluation and parameter fitting. However, the prescribed boundary conditions lead to a strong singularity and thus to slow convergence of numerical approximations. In this article we demonstrate that the solution can be related to the solution of a parabolic PDE on a rectangular space-time domain with homogeneous initial and boundary conditions by transformation and subtraction of a known function. We verify that the solution of the new PDE is indeed more regular than the solution of the original PDE and proceed to discretize the new PDE using a space-time minimal residual method. We also demonstrate that the solution depends analytically on the parameters determining the boundaries as well as the drift. This justifies the use of a sparse tensor product interpolation method to approximate the PDE solution for various parameter ranges. The predicted convergence rates of the minimal residual method and that of the interpolation method are supported by numerical simulations.


翻译:在神经科学中,决定时间的分配模式是单维的Fokker-Planck方程式,具有取决于时间的边界和空间-时间的漂移。需要对这一方程式的解决办法进行有效近似,例如模型评估和参数的安装。然而,规定的边界条件导致强烈的单一性,从而减缓数字近似值的趋同。在本篇文章中,我们证明,解决办法可能与通过转换和减减减已知功能,在具有单一初始和边界条件的矩形空间时域上使用抛射式PDE的解决办法有关。我们核实,新PDE的解决方案确实比原PDE的解决方案更经常,并着手使用空间-时间最低残留法将新的PDE分离。我们还表明,该解决办法取决于确定边界和漂移的参数,因此有理由使用稀有的沙子产品内插法来估计各种参数范围的PDE解决办法。最低残余方法和内插法方法的预测趋同率得到数字模拟的支持。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员