We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns CausalBank; and a refinement over previous work on constructing large lexical causal knowledge graphs Cause Effect Graph. Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture.
翻译:我们提出了一个有条件的文本生成框架,其中假设了可能的原因和效果的感性表达方式。这个框架取决于我们在这项工作过程中开发的两种新颖资源:一个非常大规模的英语句子集,表达因果关系模式:Causal Bankk;以及改进以前关于构建大型因果知识因果图结果图的工作。此外,我们延长了以往在法律上受约束的解码工作,以支持脱节的积极制约因素。人类评估证实,我们的方法提供了高质量和多样的产出。最后,我们利用Causal Bank对一个编码器进行持续培训,以支持最近一个最先进的因果推理模型,导致对COPA挑战集进行三点改进,而模型架构没有变化。