Today's robots often interface data-driven perception and planning models with classical model-based controllers. For example, drones often use computer vision models to estimate navigation waypoints that are tracked by model predictive control (MPC). Often, such learned perception/planning models produce erroneous waypoint predictions on out-of-distribution (OoD) or even adversarial visual inputs, which increase control cost. However, today's methods to train robust perception models are largely task-agnostic - they augment a dataset using random image transformations or adversarial examples targeted at the vision model in isolation. As such, they often introduce pixel perturbations that are ultimately benign for control, while missing those that are most adversarial. In contrast to prior work that synthesizes adversarial examples for single-step vision tasks, our key contribution is to efficiently synthesize adversarial scenarios for multi-step, model-based control. To do so, we leverage differentiable MPC methods to calculate the sensitivity of a model-based controller to errors in state estimation, which in turn guides how we synthesize adversarial inputs. We show that re-training vision models on these adversarial datasets improves control performance on OoD test scenarios by up to 28.2% compared to standard task-agnostic data augmentation. Our system is tested on examples of robotic navigation and vision-based control of an autonomous air vehicle.
翻译:今天的机器人往往将数据驱动的感知和规划模型与传统的模型控制器连接起来。例如,无人机常常使用计算机视觉模型来估计由模型预测控制(MPC)跟踪的导航路径点。这种学习的感知/规划模型往往产生错误的对分配外(OoD)甚至对抗视觉输入的偏差路点预测,这增加了控制成本。然而,今天的强力感模型培训方法主要是任务-不可知性――它们利用随机图像转换或针对视觉模型孤立的对抗性实例来增加数据集。因此,它们往往引入最终对控制无害的像素扰动模型,而缺少最敌对的。与以前为单步视觉任务合成对抗性实例的工作相比,我们的主要贡献是高效合成多步、基于模型的控制的对抗性假设。为了做到这一点,我们利用基于模型的MPC方法来计算模型控制器对状态估计错误的敏感度,从而反过来指导我们如何对对抗性投入进行综合。我们展示了对对抗性投入的像素过敏度,同时忽略了那些最具对抗性的象素味的图案,我们通过测试了这些系统对二号的自动自动智能智能模型进行测试。我们通过测试的系统对二号对二号的自动智能飞行器的图像进行测试,我们测试,改进了这些测试。