Variational inequalities play a pivotal role in a wide array of scientific and engineering applications. This project presents two techniques for adaptive mesh refinement (AMR) in the context of variational inequalities, with a specific focus on the classical obstacle problem. We propose two distinct AMR strategies: Variable Coefficient Elliptic Smoothing (VCES) and Unstructured Dilation Operator (UDO). VCES uses a nodal active set indicator function as the initial iterate to a time-dependent heat equation problem. Solving a single step of this problem has the effect of smoothing the indicator about the free boundary. We threshold this smoothed indicator function to identify elements near the free boundary. Key parameters such as timestep and threshold values significantly influence the efficacy of this method. The second strategy, UDO, focuses on the discrete identification of elements adjacent to the free boundary, employing a graph-based approach to mark neighboring elements for refinement. This technique resembles the dilation morphological operation in image processing, but tailored for unstructured meshes. We also examine the theory of variational inequalities, the convergence behavior of finite element solutions, and implementation in the Firedrake finite element library. Convergence analysis reveals that accurate free boundary estimation is pivotal for solver performance. Numerical experiments demonstrate the effectiveness of the proposed methods in dynamically enhancing mesh resolution around free boundaries, thereby improving the convergence rates and computational efficiency of variational inequality solvers. Our approach integrates seamlessly with existing Firedrake numerical solvers, and it is promising for solving more complex free boundary problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 3月25日
Arxiv
10+阅读 · 2021年11月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 3月25日
Arxiv
10+阅读 · 2021年11月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员