A generalization of the famous Caccetta--H\"aggkvist conjecture, suggested by Aharoni \cite{ADH2019}, is that any family $\mathcal{F}=(F_1, \ldots,F_n)$ of sets of edges in $K_n$, each of size $k$, has a rainbow cycle of length at most $\lceil \frac{n}{k}\rceil$. In \cite{AharoniGuo, ABCGZ2022} it was shown that asymptotically this can be improved to $O(\log n)$ if all sets are matchings of size 2, or all are triangles. We show that the same is true in the mixed case, i.e., if each $F_i$ is either a matching of size 2 or a triangle. We also study the case that each $F_i$ is a matching of size 2 or a single edge, or each $F_i$ is a triangle or a single edge, and in each of these cases we determine the threshold proportion between the types, beyond which the rainbow girth goes from linear to logarithmic.
翻译:Aharoni\ cite{ADH2019} 提出的著名的 Caccetta-H\\" aggkvist 预测的概括性, Aharoni\ cite{ADH2019} 提出的著名的 Caccetta-H\" aggkvist 预测法的概括性是,如果所有组合都匹配大小为2的大小或全部是三角形,任何家族的美元(F_ 1,\ ldots, F_n) 美元(K_n美元,每个大小为1美元,每个大小为1美元,每个大小为2美元或三角形。我们表明,在混合的情况下,每套F_i美元,其长度最多为1美元,或1美元等于1美元,或者每笔为1美元,每笔为3级或1美元,每笔为1美元,每笔的底值为3级或1美元,每笔为直端,在每例中,每例中,每笔为直径,每笔比例为1至1美元。