The advancement in the area of computer vision has been brought using deep learning mechanisms. Image Forensics is one of the major areas of computer vision application. Forgery of images is sub-category of image forensics and can be detected using Error Level Analysis. Using such images as an input, this can turn out to be a binary classification problem which can be leveraged using variations of convolutional neural networks. In this paper we perform transfer learning with state-of-the-art image classification models over error level analysis induced CASIA ITDE v.2 dataset. The algorithms used are VGG-19, Inception-V3, ResNet-152-V2, XceptionNet and EfficientNet-V2L with their respective methodologies and results.
翻译:利用深层学习机制带来了计算机视觉领域的进步。图像法证是计算机视觉应用的主要领域之一。图像的伪造是图像法证的子类别,可以通过错误程度分析探测出来。使用这种图像作为一种输入,这可能会成为一个二进制分类问题,可以利用进化神经网络的变异加以利用。在本文中,我们用最先进的图像分类模型来传授学习错误程度分析引致的CASIA ITDE v.2数据集。使用的算法是VGG-19、Inption-V3、ResNet-152-V2、XceptiononNet和高效的Net-V2L及其各自的方法和结果。