Purpose: It has been challenging to recover QSM in the presence of phase errors, which could be caused by the noise or strong local susceptibility shifts in cases of brain hemorrhage and calcification. We propose a Bayesian formulation for QSM where a two-component Gaussian-mixture distribution is used to model the long-tailed noise (error) distribution, and design an approximate message passing (AMP) algorithm with automatic and adaptive parameter estimation. Theory: Wavelet coefficients of the susceptibility map follow the Laplace distribution. The measurement noise follows a two-component Gaussian-mixture distribution where the second Gaussian component models the noise outliers. The distribution parameters are treated as unknown variables and jointly recovered with the susceptibility using AMP. Methods: The proposed AMP with parameter estimation (AMP-PE) is compared with the state-of-the-art nonlinear L1-QSM and MEDI approaches that adopt the L1-norm and L2-norm data-fidelity terms respectively. The three approaches are tested on the Sim2Snr1 data from QSM challenge 2.0, the in vivo data from both healthy and hemorrhage scans. Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE and SSIM, MEDI achieved the lowest HFEN, and each approach also has its own strong suit when it comes to various local evaluation metrics. On the in vivo dataset, AMP-PE is better at preserving structural details and removing streaking artifacts than L1-QSM and MEDI. Conclusion: By leveraging a customized Gaussian-mixture noise prior, AMP-PE achieves better performance on the challenging QSM cases involving hemorrhage and calcification. It is equipped with built-in parameter estimation, which avoids subjective bias from the usual visual fine-tuning step of in vivo reconstruction.
翻译:目的: 在出现阶段错误的情况下, 很难恢复QSM 。 阶段错误可能是由大脑出血和计算过程中的噪音或强烈当地易感性变化造成的。 我们为QSM提出一种巴伊西亚配方, 该配方使用两个部分的高斯混合分布来模拟长尾噪音( eror) 分布, 并设计一个带有自动和适应性参数估计的近似信息传递( AMP) 。 理论 : 感应地图的波列系数在 Laplace 分布之后。 测量噪音在两个部分的微调- 混合分布之后, 第二个高斯元组成部分模拟了噪音外端。 我们为QSMayesian配方配方配方被视作未知变量, 使用AMP 配方配方配方配方用来模拟长的噪音( MP- PEPE), 并设计一个带有自动和适应性参数的非线性电流数据传输( L1- QMMMMM) 和 MEride- 配方分别采用L1- 和L2-normal- dal- deal 。 在SIM1 的S- dal 中, 在S- sal- sal- sal- disal 的S- dal- sal 和S- sal- disal 两次测试中测试中, 和S- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sild- sild- sild- sild- sild- sal- sild- sild- sal 和S- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- saldation 中, 和 sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal