This paper examines the average age minimization problem where only a fraction of the network users can transmit simultaneously over unreliable channels. Finding the optimal scheduling scheme, in this case, is known to be challenging. Accordingly, the Whittle's index policy was proposed in the literature as a low-complexity heuristic to the problem. Although simple to implement, characterizing this policy's performance is recognized to be a notoriously tricky task. In the sequel, we provide a new mathematical approach to establish its optimality in the many-users regime for specific network settings. Our novel approach is based on intricate techniques, and unlike previous works in the literature, it is free of any mathematical assumptions. These findings showcase that the Whittle's index policy has analytically provable asymptotic optimality for the AoI minimization problem. Finally, we lay out numerical results that corroborate our theoretical findings and demonstrate the policy's notable performance in the many-users regime.
翻译:本文考察了平均年龄最小化问题, 只有一小部分网络用户可以同时通过不可靠的渠道传输。 找到最佳的时间安排计划, 在此情况下是众所周知的具有挑战性的。 因此, 文献中提出了惠特尔的指数政策, 认为它是一个低复杂性的问题。 尽管实施起来简单, 将这一政策的表现定性为一项臭名昭著的棘手任务。 在续集中, 我们提供了一种新的数学方法, 以在特定网络设置的多个用户系统中建立其最佳性。 我们的新办法基于复杂的技术, 与以往的文献中的工作不同, 它没有任何数学假设。 这些结果显示惠特尔的指数政策在分析上具有可辨称的、 且对AoI 最小化问题的最佳性。 最后, 我们提供了数字结果, 证实了我们的理论发现, 并展示了该政策在许多用户系统中的显著业绩 。