3D deep learning models are shown to be as vulnerable to adversarial examples as 2D models. However, existing attack methods are still far from stealthy and suffer from severe performance degradation in the physical world. Although 3D data is highly structured, it is difficult to bound the perturbations with simple metrics in the Euclidean space. In this paper, we propose a novel $\epsilon$-isometric ($\epsilon$-ISO) attack to generate natural and robust 3D adversarial examples in the physical world by considering the geometric properties of 3D objects and the invariance to physical transformations. For naturalness, we constrain the adversarial example to be $\epsilon$-isometric to the original one by adopting the Gaussian curvature as a surrogate metric guaranteed by a theoretical analysis. For invariance to physical transformations, we propose a maxima over transformation (MaxOT) method that actively searches for the most harmful transformations rather than random ones to make the generated adversarial example more robust in the physical world. Experiments on typical point cloud recognition models validate that our approach can significantly improve the attack success rate and naturalness of the generated 3D adversarial examples than the state-of-the-art attack methods.
翻译:3D深层次学习模型被证明与 2D 模型一样容易受到对抗性例子的伤害。 但是, 现有的攻击方法仍然远远没有隐形, 并且受到物理界严重性能退化的影响。 虽然 3D 数据结构严密, 但很难用Euclidean 空间的简单度量仪将扰动约束起来。 在本文中, 我们提出一个新型的 $\ epsilon$- isomaty ( epsilon$- ISO) 攻击, 以便在物理界产生自然和强健的 3D 对抗性例子, 方法是考虑 3D 对象的几何特性和物理变化的易变性。 关于自然特性, 我们限制对抗性的例子是 $\ epsilon- soterm 。 通过采用高斯曲线作为理论分析所保证的代号, 很难将扰动性扰动 。 关于物理变异性, 我们提出了一种超强的变形( MaxOt) 方法, 来积极搜索最有害的变形变形, 而不是随机的变形法, 使物理世界中生成的对立性变形模型更加稳健。 在物理世界中产生的对抗性变形中, 。 对典型的反形模型的反形模型的反形模型进行实验, 3D 使典型的反向的反向的反形模型的反形方法能够大大地验证。