Traditional approaches to extrinsic calibration use fiducial markers and learning-based approaches rely heavily on simulation data. In this work, we present a learning-based markerless extrinsic calibration system that uses a depth camera and does not rely on simulation data. We learn models for end-effector (EE) segmentation, single-frame rotation prediction and keypoint detection, from automatically generated real-world data. We use a transformation trick to get EE pose estimates from rotation predictions and a matching algorithm to get EE pose estimates from keypoint predictions. We further utilize the iterative closest point algorithm, multiple-frames, filtering and outlier detection to increase calibration robustness. Our evaluations with training data from multiple camera poses and test data from previously unseen poses give sub-centimeter and sub-deciradian average calibration and pose estimation errors. We also show that a carefully selected single training pose gives comparable results.
翻译:在这项工作中,我们提出了一个基于学习的无标记的外部校准系统,该系统使用深度相机,并不依赖模拟数据。我们从自动生成的真实世界数据中学习终端效应分解、单框架旋转预测和关键点探测模型。我们用一种变换技巧来获得EE从旋转预测中得出的估计值和匹配算法,以便从关键点预测中获得EE构成估计值。我们进一步利用迭接最接近点算法、多框架、过滤和外缘探测来提高校准强度。我们用来自多个相机的训练数据进行的评价,以及从以前看不见的图像产生的测试数据,提供了次中位计和次中位平均校准,并造成估计错误。我们还表明,经过仔细选择的单项培训可以产生相似的结果。