Determinant maximization problem gives a general framework that models problems arising in as diverse fields as statistics \cite{pukelsheim2006optimal}, convex geometry \cite{Khachiyan1996}, fair allocations\linebreak \cite{anari2016nash}, combinatorics \cite{AnariGV18}, spectral graph theory \cite{nikolov2019proportional}, network design, and random processes \cite{kulesza2012determinantal}. In an instance of a determinant maximization problem, we are given a collection of vectors $U=\{v_1,\ldots, v_n\} \subset \RR^d$, and a goal is to pick a subset $S\subseteq U$ of given vectors to maximize the determinant of the matrix $\sum_{i\in S} v_i v_i^\top $. Often, the set $S$ of picked vectors must satisfy additional combinatorial constraints such as cardinality constraint $\left(|S|\leq k\right)$ or matroid constraint ($S$ is a basis of a matroid defined on the vectors). In this paper, we give a polynomial-time deterministic algorithm that returns a $r^{O(r)}$-approximation for any matroid of rank $r\leq d$. This improves previous results that give $e^{O(r^2)}$-approximation algorithms relying on $e^{O(r)}$-approximate \emph{estimation} algorithms \cite{NikolovS16,anari2017generalization,AnariGV18,madan2020maximizing} for any $r\leq d$. All previous results use convex relaxations and their relationship to stable polynomials and strongly log-concave polynomials. In contrast, our algorithm builds on combinatorial algorithms for matroid intersection, which iteratively improve any solution by finding an \emph{alternating negative cycle} in the \emph{exchange graph} defined by the matroids. While the $\det(.)$ function is not linear, we show that taking appropriate linear approximations at each iteration suffice to give the improved approximation algorithm.
翻译:确定性最大化问题提供了一个总体框架, 以不同域中出现的模型问题, 如统计 {cite{pukelsheim2006opmatal} 、 convex 几何测量\ cite{Khachiyan1996}、 公平的分配\ cite{ anari2016nash}、 组合体分析器\ cite{AnariGV18} 、 光谱图形理论\ cite{ nikolov2019比例} 、 网络设计, 以及随机进程 {cite{kulesza2012dematernal} 。 在确定性最大化问题的例子中, 我们得到了一个矢量分析器 $_v\ 1\\ hildots, v_n\\ subset smission\ recremedicolation\ remails a succeptal $Sprestial=democial= a more mails a mailation.