Within commercial wind energy generation, the monitoring and predictive maintenance of wind turbine blades in-situ is a crucial task, for which remote monitoring via aerial survey from an Unmanned Aerial Vehicle (UAV) is commonplace. Turbine blades are susceptible to both operational and weather-based damage over time, reducing the energy efficiency output of turbines. In this study, we address automating the otherwise time-consuming task of both blade detection and extraction, together with fault detection within UAV-captured turbine blade inspection imagery. We propose BladeNet, an application-based, robust dual architecture to perform both unsupervised turbine blade detection and extraction, followed by super-pixel generation using the Simple Linear Iterative Clustering (SLIC) method to produce regional clusters. These clusters are then processed by a suite of semi-supervised detection methods. Our dual architecture detects surface faults of glass fibre composite material blades with high aptitude while requiring minimal prior manual image annotation. BladeNet produces an Average Precision (AP) of 0.995 across our {\O}rsted blade inspection dataset for offshore wind turbines and 0.223 across the Danish Technical University (DTU) NordTank turbine blade inspection dataset. BladeNet also obtains an AUC of 0.639 for surface anomaly detection across the {\O}rsted blade inspection dataset.
翻译:在商业风能发电中,监测和预测风轮机叶片的现场监测和预报维护是一项至关重要的任务,通过无人驾驶航空飞行器(无人驾驶飞行器)的空中勘测进行远程监测是司空见惯的任务。涡轮叶片随着时间推移很容易在操作上和天气上受到破坏,从而降低涡轮机的能源效率产出。在这项研究中,我们处理的是刀片探测和提取的本可耗时的任务的自动化,以及在无人驾驶涡轮机叶检查图像中发现故障。我们提议布雷德Net(BladeNet)是一个基于应用的、强有力的双重结构,既能进行不受监督的涡轮叶探测和提取,又能利用简单线性循环聚集法(SLIC)生成超级像素生成区域集群。这些集群随后由一套半超能性探测方法处理。我们的两套结构探测高性玻璃纤维复合材料刀片片的表面断层,同时需要最低限度的手动图像说明。布雷德网(BladeNet)制作了平均精度(AP)0.995横跨我们的涡叶刀叶刀片探测和提取系统,然后使用简易的SlixTLIS检查系统,供丹麦大学用于进行海上风轮机头压检查。