Multilingual pre-trained models exhibit zero-shot cross-lingual transfer, where a model fine-tuned on a source language achieves surprisingly good performance on a target language. While studies have attempted to understand transfer, they focus only on MLM, and the large number of differences between natural languages makes it hard to disentangle the importance of different properties. In this work, we specifically highlight the importance of word embedding alignment by proposing a pre-training objective (ALIGN-MLM) whose auxiliary loss guides similar words in different languages to have similar word embeddings. ALIGN-MLM either outperforms or matches three widely adopted objectives (MLM, XLM, DICT-MLM) when we evaluate transfer between pairs of natural languages and their counterparts created by systematically modifying specific properties like the script. In particular, ALIGN-MLM outperforms XLM and MLM by 35 and 30 F1 points on POS-tagging for transfer between languages that differ both in their script and word order (left-to-right v.s. right-to-left). We also show a strong correlation between alignment and transfer for all objectives (e.g., rho=0.727 for XNLI), which together with ALIGN-MLM's strong performance calls for explicitly aligning word embeddings for multilingual models.


翻译:多语言预先培训的模型显示零球跨语言传输,对源语言进行微调的模型在目标语言上取得了令人惊讶的良好业绩。研究虽然试图理解传输,但只注重MLM,自然语言之间的大量差异使得难以分解不同属性的重要性。在这项工作中,我们特别强调了单词嵌入整合的重要性,为此提出了一个培训前目标(ALIGN-MLMM),其辅助损失部分引导不同语言的词组相似,以类似文字嵌入。ALIGN-MLM 要么超越或匹配了三个得到广泛接受的目标(MLM、XLM、DICT-MLMM),我们评价了自然语言对对等语言的转让,而自然语言对等则通过系统地修改像文字等特定属性而形成的对等。 特别是ALIGNM-M 将XLMM 和 MLM 相容换成35和30 F1点,关于POS-拖动不同语言之间转移的词组(左对右对左)的词组。我们还展示了在XIMMLM 目标的校准和统统制(LIM ) 的所有目标的统统调调和统调(LILM 等)之间紧密联系。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
专知会员服务
124+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Memory Efficient Continual Learning with Transformers
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员