We present a novel end-to-end language model for joint retrieval and classification, unifying the strengths of bi- and cross- encoders into a single language model via a coarse-to-fine memory matching search procedure for learning and inference. Evaluated on the standard blind test set of the FEVER fact verification dataset, classification accuracy is significantly higher than approaches that only rely on the language model parameters as a knowledge base, and approaches some recent multi-model pipeline systems, using only a single BERT base model augmented with memory layers. We further demonstrate how coupled retrieval and classification can be leveraged to identify low confidence instances, and we extend exemplar auditing to this setting for analyzing and constraining the model. As a result, our approach yields a means of updating language model behavior through two distinct mechanisms: The retrieved information can be updated explicitly, and the model behavior can be modified via the exemplar database.


翻译:我们提出了一个新型的端对端语言模式,用于联合检索和分类,将双元和交叉编码器的长处通过粗略到细微的内存匹配搜索程序整合为单一语言模式,用于学习和推论。根据FEWER事实核实数据集的标准盲测试集,分类准确性大大高于仅以语言模型参数作为知识基础的方法,并采用一些最近的多模型管道系统,仅使用一个与记忆层相加的单一BERT基准模型。我们进一步展示了如何利用连接的检索和分类来识别低信任度实例,并将实例审计扩展至用于分析和限制模型的这一设置。结果,我们的方法产生了一种通过两个不同机制更新语言模式行为的手段:检索的信息可以明确更新,模型行为可以通过Exemplar数据库进行修改。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
6+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年3月21日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员