We present a novel end-to-end language model for joint retrieval and classification, unifying the strengths of bi- and cross- encoders into a single language model via a coarse-to-fine memory matching search procedure for learning and inference. Evaluated on the standard blind test set of the FEVER fact verification dataset, classification accuracy is significantly higher than approaches that only rely on the language model parameters as a knowledge base, and approaches some recent multi-model pipeline systems, using only a single BERT base model augmented with memory layers. We further demonstrate how coupled retrieval and classification can be leveraged to identify low confidence instances, and we extend exemplar auditing to this setting for analyzing and constraining the model. As a result, our approach yields a means of updating language model behavior through two distinct mechanisms: The retrieved information can be updated explicitly, and the model behavior can be modified via the exemplar database.
翻译:我们提出了一个新型的端对端语言模式,用于联合检索和分类,将双元和交叉编码器的长处通过粗略到细微的内存匹配搜索程序整合为单一语言模式,用于学习和推论。根据FEWER事实核实数据集的标准盲测试集,分类准确性大大高于仅以语言模型参数作为知识基础的方法,并采用一些最近的多模型管道系统,仅使用一个与记忆层相加的单一BERT基准模型。我们进一步展示了如何利用连接的检索和分类来识别低信任度实例,并将实例审计扩展至用于分析和限制模型的这一设置。结果,我们的方法产生了一种通过两个不同机制更新语言模式行为的手段:检索的信息可以明确更新,模型行为可以通过Exemplar数据库进行修改。